AV¶ÌÊÓÆµ


Software

Logiciels et données relatifs aux articles de Olivier Renaud

Ìý

matlab toolbox for Multiscale Granger Causality: follow this link

For more information on the method or reference to cite:

Cekic, S., Grandjean, D., & Renaud, O. (2019). Multiscale Bayesian state-space model for Granger causality analysis of brain signal. Journal of Applied Statistics, 46(1), 66–84.

Ìý


Ìý

Ìý

Permutation Tests for Regression, (Repeated Measures) ANOVA/ANCOVA and Comparison of Signals: R package permuco available on cran:

Functions to compute p-values based on permutation tests. Regression, ANOVA and ANCOVA, omnibus F-tests, marginal unilateral and bilateral t-tests are available. See the "Vignette":

Several methods to handle nuisance variables are implemented (Kherad-Pajouh, S., & Renaud, O. (2010) <> ; Kherad-Pajouh, S., & Renaud, O. (2014) <> ; Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014) <>). An extension for the comparison of signals issued from experimental conditions (e.g. EEG/ERP signals) is provided. Several corrections for multiple testing are possible, including the cluster-mass statistic (Maris, E., & Oostenveld, R. (2007) <>) and the threshold-free cluster enhancement (Smith, S. M., & Nichols, T. E. (2009) <>).

Ìý


Ìý

Companion code in R sofware for a tutorial on robustness

Courvoisier, D. S. and Renaud, O. (2010), , International Journal of Psychological Research 3(1), 78--87.

List of instructions/lines of calls for the methods presented in the article(right-click and select "Save as"). Note that the version on the editor webpage is an incorrect version that was not updated by the editor.

First dataset used: cigArt.csv

Second dataset used: creatArt.csv


Ìý

This page used to contain a companion code in R for sofware for a robust coefficient of determination (or R^2)

Renaud, O. and Victoria-Feser, M.-P. (2010), , Journal of Statistical Planning and Inference 140, 1852--1862.

However this code is now included (and improved) in the function lmrob and its summary (from the "robustbase" package). It is the implementation we highly recommand. See an example of use below:

> ## If not present, install the package 
> install.packages("robustbase")
[...]
>
> ## active it
> library(robustbase)
>
> ## data to be used:
> data(coleman)
>
> ## run the robust linear regression
> col2lmrob = lmrob(Y ~salaryP+motherLev, data=coleman, setting = "KS2014")
>
>
> ## get the output, including the 2 proposed robust R2 under "Multiple R-squared" and "Adjusted R-squared"
> summary(col2lmrob)

Call:
lmrob(formula = Y ~ salaryP + motherLev, data = coleman, setting = "KS2014")
Ìý\--> method = "SMDM"
Residuals:
ÌýÌýÌý MinÌýÌýÌýÌýÌý 1QÌý MedianÌýÌýÌýÌýÌý 3QÌýÌýÌýÌý Max
-8.5458 -1.9686Ìý 0.0873Ìý 2.4699Ìý 6.4041

Coefficients:
ÌýÌýÌýÌýÌýÌýÌýÌýÌýÌýÌý Estimate Std. Error t value Pr(>|t|)ÌýÌý Ìý
(Intercept)Ìý -5.2269ÌýÌýÌý 10.6118Ìý -0.493 0.628629ÌýÌý Ìý
salaryPÌýÌýÌýÌýÌýÌý 0.5099ÌýÌýÌýÌý 2.2364ÌýÌý 0.228 0.822370ÌýÌý Ìý
motherLevÌýÌýÌýÌý 6.2439ÌýÌýÌýÌý 1.5613ÌýÌý 3.999 0.000929 ***
---
Signif. codes:Ìý 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Robust residual standard error: 4.266
Multiple R-squared:Ìý 0.509,ÌýÌý ÌýAdjusted R-squared:Ìý 0.4512
Convergence in 11 IRWLS iterations
[...]