AV短视频

2017

Our muscles measure the time of day

Download the PDF version

CMU_BandeauWeb.jpg

Biological clocks are ticking everywhere throughout our body. They trigger the release of the hormone melatonin during sleep, favour the secretion of digestive enzymes at lunchtime or keep us awake at the busiest moments of the day. A 芦master clock禄 in the brain synchronises all the subsidiary ones in various organs. Researchers from the AV短视频 (UNIGE), Switzerland, together with their colleagues from the AV短视频 of Bath, the Universit茅 Claude Bernard in Lyon, EPFL, the AV短视频 of Surrey, and the Nestl茅 Institute of Health Sciences, have found that such a circadian clock is at work in our muscles. Their research, funded by the Swiss National Science Foundation (SNSF), shows that perturbations of this machinery might be important for type 2 diabetes development. Their work has just been published in the magazine PNAS.

The researchers discovered that levels of the various types of fat (lipids) contained in our muscle cells vary during the day, sometimes favouring one kind of lipid over another. Could a biological clock be at play? The international team has tested the hypothesis with volunteer subjects. They synchronised every subject鈥檚 master clock by asking them to adhere to a daily eating and sleeping routine one week prior to the experiment. Every four hours, researchers would take a very small sample of thigh muscle tissue and analyse its lipid composition.

The team observed a clear correlation between the muscle cell鈥檚 lipid composition and the time of day, explains Howard Riezman from the Biochemistry Department of the Faculty of Sciences, UNIGE, who codirected the study in Geneva with colleague Charna Dibner, from the Department of Internal Medicine Specialties, from the Faculty of Medicine, UNIGE. 鈥淎s the combination of lipids varied substantially from one individual to another, we needed further evidence to corroborate these findings,鈥 he explains.

In a second step, the researchers switched to an in-vitro experiment. They cultivated human muscle cells and artificially synchronised them in the absence of a master clock, using a signal molecule normally secreted in the body. The researchers observed a periodic variation in the cell鈥檚 lipid composition, similar to what they noticed in human subjects. But when they disrupted the clock mechanism by inhibiting the responsible genes, the periodically changing variations in the lipids were mostly lost.

Diabetes and sleep disorders are linked

鈥淲e have clearly shown that this variation of lipid types in our muscles is due to our circadian rhythm,鈥 explains first author Ursula Loizides-Mangold, from the Department of Internal Medicine Specialties, from the Faculty of Medicine, UNIGE. 鈥淏ut the main question is still to be answered: what is this mechanism for?鈥 Riezman thinks that the biological clock in the muscle, with its impact on the lipids, could help in regulating the cells鈥 sensitivity to insulin. Indeed, lipids 鈥 being a component of the cell membrane 鈥 influence the molecules鈥 ability to travel into and out of the muscle cells. Changes in its composition could tune the muscle鈥檚 sensitivity to the hormone as well as its ability to take in blood sugar.

A low sensitivity of the muscle to insulin leads to a condition called insulin resistance, which is known to be a cause of type 2 diabetes. 鈥淪tudies strongly suggest a link between circadian clocks, insulin resistance and diabetes development,鈥 explains Charna Dibner, the co-director of the study. 鈥淚f we establish a link between circadian mechanisms and type 2 diabetes via lipid metabolism, this could have important therapeutic implications. Thanks to our new tools for studying human muscle cellular clocks in vitro, we now have the possibility to investigate this hypothesis in our next study.鈥

Contact: Charna Dibner, +41 22 372 93 18; Howard Riezman, +41 22 379 64 69

More information on

26 Sept 2017

2017

Our experts

Talk to specialists from all disciplines

Discover and download UNIGE images

Archives

All our press releases since 2012

media(at)unige.ch

Université de Genève

24 rue Général-Dufour

CH-1211 Genève 4

T. +41 22 379 77 96

F. +41 22 379 77 29