AV¶ÌÊÓÆµ

Outils pour utilisateurs

Outils du site


start

¶Ù¾±´Ú´Úé°ù±ð²Ô³¦±ð²õ

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
start [2024/11/18 15:50] – [Seminars and conferences] g.mstart [2025/02/18 14:56] (Version actuelle) – [Seminars and conferences] g.m
Ligne 8: Ligne 8:
 Johannes Josi (February 2018). Johannes Josi (February 2018).
  
-Current members: Thomas Blomme, Francesca Carocci, Aloïs Demory, Gurvan Mevel, [[Grigory Mikhalkin|Grigory Mikhalkin]], Antoine Toussaint.+Current members: Thomas Blomme, Francesca Carocci, Aloïs Demory, Gurvan ²Ñé±¹±ð±ô, [[Grigory Mikhalkin|Grigory Mikhalkin]], Antoine Toussaint.
  
 Alumni: Ivan Bazhov, Johan Bjorklund, Rémi Crétois, Weronika Czerniawska, Yi-Ning Hsiao, Jens Forsgard, Maxim Karev, Ilya Karzhemanov, Sergei Lanzat, Michele Nesci, Alina Pavlikova, Mikhail Pirogov, Johannes Rau, Arthur Renaudineau. Alumni: Ivan Bazhov, Johan Bjorklund, Rémi Crétois, Weronika Czerniawska, Yi-Ning Hsiao, Jens Forsgard, Maxim Karev, Ilya Karzhemanov, Sergei Lanzat, Michele Nesci, Alina Pavlikova, Mikhail Pirogov, Johannes Rau, Arthur Renaudineau.
Ligne 28: Ligne 28:
 ====== Seminars and conferences ====== ====== Seminars and conferences ======
 ---- ----
 +
 +  Joé Brendel (ETHZ), Friday, Feb 21, 15h15, room 6-13 (Seminaire "Fables Géométriques")
 +
 +"Split tori in S^2 x S^2, billiards and ball-embeddability"
 +
 +Abstract: In this talk we will discuss the symplectic classification of Lagrangian tori that split as circles in S^2 x S^2. As it turns out, this classification is equivalent to playing mathematical billiards on a rectangular table. This has many interesting applications, for example to Lagrangian packing and the topological study of the space of Lagrangians. We will focus on one application in particular, asking which Lagrangian tori are contained in the image of a symplectic ball embedding. There are many open questions of more general interest surrounding this property of "ball-embeddability" of Lagrangians, which we will discuss at the end of the talk. This is joint work with Joontae Kim. 
 +
 +  Gurvan ²Ñé±¹±ð±ô (UNIGE), Wednesday, Feb 19, 14h00, room 1-07 (Seminaire "Fables Géométriques")
 +
 +"Floor diagrams and some tropical invariants in positive genus"
 +
 +Abstract : Göttche-Schroeter invariants are a rational tropical refined invariant, i.e. a polynomial counting genus 0 curves on toric surfaces, that can be computed with a floor diagrams approach. In this talk I will explain that this approach extends in any genus. This gives new invariants, related to ones simultaneously defined by Shustin and Sinichkin. I will then say few words on a quadratically enriched (and not refined !) version of this extension.
 +
 +
 +  Uriel Sinichkin (Tel-Aviv), Wednesday, Feb 5, 14h00, room 1-07 + Zoom (Seminaire "Fables Géométriques")
 +
 +"Refined Tropical Invariants and Characteristic Numbers"
 +
 +Abstract: In this talk I will present a generalization of Goettche-Schroeter and Schroeter-Shustin refined counts of tropical curves that splits to a product of terms on small fragments of the curves. This count is invariant in each of the following situations: either genus at most one, or a single contact element, or point conditions in Mikhalkin position. I will compare our results to ²Ñé±¹±ð±ô’s floor diagram approach, and discuss the specialization of the count at q=1, which recovers certain characteristic numbers. 
 +
 +
 +  Thomas Blomme (Neuchâtel), Friday, Jan 31, 14h00, room 1-07 (Seminaire "Fables Géométriques")
 +
 +"Une preuve courte d’une formule de revêtement multiple"
 +
 +Abstract: Enumérer les courbes de genre g passant par g points dans une surface abélienne est un problème naturel, et d’une difficulté surprenamment inégale en fonction du degré des courbes étudiées. Pour les degrés « primitifs », il est aisé d’obtenir une formule close par une résolution simple et explicite. Pour les classes « divisibles », une telle résolution est en revanche assez fastidieuse et souvent hors de portée. Pour autant, les invariants de ces dernières s’expriment aisément en fonction des invariants primitifs au travers de la formule de revêtement multiple, conjecturée par G. Oberdieck. Dans cet exposé, on va montrer comment la géométrie tropicale permet de prouver cette formule en esquivant toute forme concrète d’énumération.
 +
 +
 +  Ajith Urundolil-Kumaran (Cambridge), Wednesday, Dec 11, 14h00, room 06-13 (Seminaire "Fables Géométriques")
 +
 +"Tropical correspondence theorems, Scattering diagrams and Quantum Mirrors"
 +
 +Abstract: The mirror algebras constructed in the Gross-Siebert program come with a natural trace pairing. The Frobenius conjecture gives an enumerative interpretation for this pairing. In the Log Calabi-Yau surface case there exists a deformation quantization of the mirror algebra. We prove a quantum version of the Frobenius conjecture by interpreting it as a refined tropical correspondence theorem. This is joint work with Patrick Kennedy-Hunt and Qaasim Shafi.
 +
 +
 +  Marvin HAHN (Dublin), Wednesday, Dec 4, 14h00, room 06-13 (Seminaire "Fables Géométriques")
 +
 +"A tropical twist on Hurwitz numbers"
 +
 +Hurwitz numbers count branched morphisms between Riemann surfaces with fixed numerical data. While a classical invariant, having been introduced in the 19th century, Hurwitz numbers are an active topic of study, among others due to their interplay with Gromov-Witten theory and their role in mirror symmetry. In recent work of Chapuy and Dołęga a non-orientable generalisation of Hurwitz numbers was introduced, so-called b-Hurwitz numbers. These invariants are a weighted enumeration of maps between non-orientable surfaces weighted by a power of a parameter b. This parameter should be viewed as measuring the non-orientability of the involved covers. For b=0, one recovers classical Hurwitz numbers, while b=1 represents a non-weighted count of non-orientable maps yielding so-called twisted Hurwitz numbers. In this talk, we derive a combinatorial model of twisted Hurwitz numbers via tropical geometry and employ it to derive a wide array of new structural properties. This talk is based on joint work with Hannah Markwig.
 +
  
   Aloïs DEMORY (Genève), Wednesday, Nov 20, 14h00, room 06-13 (Seminaire "Fables Géométriques")   Aloïs DEMORY (Genève), Wednesday, Nov 20, 14h00, room 06-13 (Seminaire "Fables Géométriques")
Ligne 37: Ligne 78:
 The very specific topological properties of the hypersurfaces produced using this method are quite well studied in the case of hypersurfaces in smooth toric varieties. We present an ongoing attempt to extend some of these properties to primitive surfaces in arbitrary 3-dimensional toric varieties. As a consequence, new maximal surfaces in certain singular and non-singular toric 3-folds are constructed. The very specific topological properties of the hypersurfaces produced using this method are quite well studied in the case of hypersurfaces in smooth toric varieties. We present an ongoing attempt to extend some of these properties to primitive surfaces in arbitrary 3-dimensional toric varieties. As a consequence, new maximal surfaces in certain singular and non-singular toric 3-folds are constructed.
  
-  Friday, Oct 18, 14h, 06-13Ìý+  Monday, Nov 11, 14h00, 01-15, Nikon KURNOSOV (Glasgow)Ìý
-Seminaire "Fables géométriques&±ç³Ü´Ç³Ù;Ìý+Ìý
-Stepan Orevkov (Toulouse)+"Bounds on Betti numbers of holomorphically symplectic manifolds and conjectures all around"Ìý
 +Ìý
 +Abstract. I will review how to construct holomorphically symplectic manifolds, there are four series of hyperkahler ones, one non-Kahler (BG-manifolds) and some singular ones known. I will talk on ideas  how to bound the Betti numbers of holomorphic symplectic manifolds. And explain on the connection to some other conjectures like Nagai’s conjecture and SYZ conjecture.Ìý
 +Ìý
 +  Friday, Nov 1, 14h, 06-13, and Monday, Nov 4, 14h, 01-15, minicourseÌý
 +Ìý
 +Vladimir Fock (Strasbourg)Ìý
 +Ìý
 +"Goncharov-Kenyon integrable systems and plane curves&±ç³Ü´Ç³Ù;Ìý
 +Ìý
 +Goncharov-Kenyon constructed integrable system starting form any NewtonÌý
 +polygon which generalize plenty of known integrable systems. The phaseÌý
 +space of such system is the space of plane curves provided with a lineÌý
 +bundle. On the other hand the same space admit a description as aÌý
 +cluster variety and thus can be parameterized by algebraic tori. The aimÌý
 +of the talk is to describe these two points of view on the integrableÌý
 +system as well as discuss some other geometric interpretations of them.Ìý
 +Ìý
 +Ìý
 +Ìý
 +Ìý
 +  Friday, Oct 18, 14h, 06-13, Stepan Orevkov (Toulouse)
 "An algebraic curve with small boundary components in the 4-ball" "An algebraic curve with small boundary components in the 4-ball"
  
Ligne 45: Ligne 107:
 We construct an algebraic curve in a ball in C^2 which passes through the origin, and such that all its boundary components are arbitrarily small. We construct an algebraic curve in a ball in C^2 which passes through the origin, and such that all its boundary components are arbitrarily small.
  
-  Wednesday, Oct 16, 14h30, 06-13Ìý+  Wednesday, Oct 16, 14h30, 06-13Stepan Orevkov (Toulouse)
-Stepan Orevkov (Toulouse)+
 "On Korchagin's conjectures about M-curves of degree 9 in RP^2" "On Korchagin's conjectures about M-curves of degree 9 in RP^2"
  
Ligne 58: Ligne 119:
  
  
-  Monday, Sep 23, 14h30, room 01-15 and Wednesday, Sep 25, 14h00, room 06-13+  Monday, Sep 23, 14h30, room 01-15 and Wednesday, Sep 25, 14h00, room 06-13, minicourseÌý
 Rostislav MATVEEV (Leipzig). Rostislav MATVEEV (Leipzig).
 +
 "Corks, light-bulbs and other 4D objects" "Corks, light-bulbs and other 4D objects"
  
start.1731941425.txt.gz · Dernière modificationÌý: 2024/11/18 15:50 de g.m

Sauf mention contraire, le contenu de ce wiki est placé sous les termes de la licence suivanteÌý: