Les membres du Research Center for Statistics publient des travaux scientifiques qui relèvent principalement de la statistique fondamentale (statistique mathématique) et se concentrent sur des domaines de recherche appliquée comme l’économétrie de la finance, les sciences économiques, les sciences de la santé, l’ingénierie, les sciences de l’environnement, la psychologie et les sciences sociales. Plus particulièrement, les chercheur-e-s du Centre fournissent leur expertise en ce qui concerne l’inférence robuste, l’inférence à partir d’un petit échantillon, l’inférence indirecte, la statistique semi-paramétrique ou non-paramétrique, le choix du modèle pour les données en grande dimension, l’analyse de séries chronologiques, les modèles linéaires à variables latentes et modèles de mélange, et l’analyse de données longitudinales.
Parmi ses membres, le Centre compte des personnes qui sont (ou ont été) membres du comité de rédaction de revues statistiques telles que le Journal of the American Statistical Association, TEST, Sankhya B, Computational Statistics & Data Analysis, et de revues relevant d’autres domaines, tel que The Journal of Income Inequality.
Le Centre organise également des conférences scientifiques internationales, ou participe à leur organisation. Parmi elles, figurent la 21ème International Conference on Computational Statistics (COMPSTAT 2014), organisée à Genève, en août 2014; et l'International Conference on Robust Statistics (ICORS 2016), organisée à Genève, en juin 2016.
Les membres du Centre participent à la recherche de financements externes en vue de réaliser des projets de recherche. Les postes de nombreux-ses doctorant-e-s du Centre sont financés grâce à ces projets. Le soutien financier provient principalement du Fonds national suisse, bien que certains financements proviennent d’autres fonds.
Ìý
Sélection de publications
> Pour une liste complète, veuillez consulter notre page web Savoir & publications
Ìý
Thèses de doctorat récentes
Accurate Inference Through Bias Correction for Parametric and Semiparametric Models (Zhang, 2024)
Contributions to the Statistical Analysis of Networks and Graphs ()
Indirect Estimators and Computational Methods for Models with Unobserved Variables in High Dimensions ()
Robustness in models for categorical variables ()
Contributions to robust inference for categorial data and to robust Bayesian inference ()
Quantitative methods for non-linear models ()
Causal Inference for Extremes ()
Contributions to higher-order correct and robust inference for dependent data ()
Domain-Tailored Approaches to Statistical Learning ()
Contributions to high-dimensional and semiparametric statistics for dependent data ()
Statistical Inference on Network Data: Spatial Panel and Latent Variables ()
Topics in Statistics and Financial Econometrics: Penalized Estimators and Stochastic Discount Factors ()
Rare Events, Data Science and Climate Modeling (Vignotto, E. 2021)
Contributions to time series analysis ()
Simultaneous and post-selection inference for mixed parameters ()
> Veuillez cliquer ici pour de plus amples informations sur le programme de doctorat en statistique.