Members of the Research Center for Statistics publish scientific work that is primarily in the area of fundamental statistics (mathematical statistics) and focuses on applied research areas such as financial econometrics, economics, health sciences, engineering, environmental sciences, psychology, and social sciences. In particular, the Center's researchers provide expertise in robust inference, small sample inference, indirect inference, semi-parametric and non-parametric statistics, model selection for high-dimensional data, time series analysis, linear latent variable and mixture models, and longitudinal data analysis.
The Center's membership includes individuals who are (or have been) members of the editorial boards of statistical journals such as the Journal of the American Statistical Association, TEST, Sankhya B, Computational Statistics & Data Analysis, and other disciplinary journals such as The Journal of Income Inequality.
The Center also organizes or participates in the organization of international scientific conferences. These include the 21st International Conference on Computational Statistics (COMPSTAT 2014), held in Geneva in August 2014, and the International Conference on Robust Statistics (ICORS 2016), held in Geneva in June 2016.
The members of the Research Center for StatisticsÌýare involved in seeking external funding for research projects. Many of the Center's Ph.D. students are funded through these projects. Financial support comes mainly from the Swiss National Science Foundation, although some funding comes from other funds.
Ìý
RECENT Publications
Guerrier, S., Kuzmics, C., &ÌýVictoria-Feser, M.-P.Ìý2024. Assessing COVID-19 Prevalence in Austria with Infection Surveys and Case Count Data as Auxiliary Information.ÌýJournal of the American Statistical Association.
> For a complete list, please visit our Knowledge & Publications page.
Ìý
Recent Ph.D. Theses
Accurate Inference Through Bias Correction for Parametric and Semiparametric Models (Zhang, 2024)
Contributions to the Statistical Analysis of Networks and Graphs ()
Indirect Estimators and Computational Methods for Models with Unobserved Variables in High Dimensions ()
Robustness in models for categorical variables ()
Quantitative methods for non-linear models ()
Causal Inference for Extremes ()
Contributions to higher-order correct and robust inference for dependent data ()
Domain-Tailored Approaches to Statistical Learning ()
Contributions to high-dimensional and semiparametric statistics for dependent data ()
Statistical Inference on Network Data: Spatial Panel and Latent Variables ()
Topics in Statistics and Financial Econometrics: Penalized Estimators and Stochastic Discount Factors ()
Rare Events, Data Science and Climate Modeling (Vignotto, E. 2021)
Contributions to time series analysis ()
Simultaneous and post-selection inference for mixed parameters ()
> Click here for more information on the Ph.D. in Statistics program.